打假公告 | 联系我们 | 投诉建议和代测反馈:13818158258 | 新版网站 |

订单查询
酶联产品
科研ELISA 科研人Elisa 科研大鼠Elisa 科研小鼠Elisa 科研兔Elisa 科研猪Elisa 科研鸡Elisa
农残检测 动物酶免试剂盒 酶免试剂盒 动物金标试剂盒 金标试剂盒 其他检测类
PCR试剂盒 PCR检测试剂盒
生化试剂盒 氧化磷酸化系列 植物激素系列 氧化与抗氧化系列 果胶系列 辅酶Ⅱ系列 谷胱甘肽系列 维生素C代谢系列 氮代谢系列 氨基酸代谢系列 酯酶系列 三羧酸循环系列 糖酵解系列 蛋白酶系列 脂肪酸代谢系列 淀粉系列 蔗糖系列 糖代谢系列 P450系列 离子系列 土壤系列 信号系列 其它系列 蛋白含量测定系列 糖异生系列 糖原系列 维生素系列 光合作用系列 辅酶Ⅰ系列 花青素合成系列 乙醛酸循环系列 海藻糖系列
酶联抗体 一抗 内参抗体 抗体相关支持试剂 标签抗体
二抗 AP标记二抗 Biotin标记二抗 HRP标记二抗 PE标记二抗 荧光标记二抗 其他二抗
细胞系 人细胞系 猪细胞系 猴细胞系 小鼠细胞系 大鼠细胞系 其他细胞系
原代细胞 人原代细胞 大鼠原代细胞 小鼠原代细胞 兔原代细胞 猪原代细胞 其他原代细胞 鸡原代细胞
细胞专用培养基 人细胞专用培养基 兔细胞专用培养基 小鼠细胞专用培养基 大鼠细胞专用培养基 其他细胞专用培养基
完全培养基 完全培养基 人完全培养基 大鼠完全培养基 小鼠完全培养基 其他完全培养基
细胞库 菌株 细胞株 永生化细胞 耐药细胞株 荧光示踪稳株 luc示踪细胞株 细胞冻存液
病理染色液 HE染色 骨组织染色 碳水化合物染色 固定液 结缔组织染色 脱钙液 酶类染色 细胞染色 植物染色 指示剂 其他染色 微生物染色 核酸染色 金属及盐染色 神经染色 脂类染色 色素染色
酶标仪 酶标仪 洗板机
其他试剂盒 其他产品
分子生物学试剂 DNA溶液 RNA溶液 蛋白电泳 蛋白其他 核酸电泳 核酸提取 核酸杂交 酶抑制剂 免疫印迹 核酸其他 分子生物学试剂 蛋白提取与检测
标准溶液 标准溶液 滴定液
常规溶液 抗凝剂 其他溶液 药典溶液
细胞生物学试剂 抗生素 细胞检测 细胞培养 细胞其他 细胞组分分离
免疫学试剂 免疫学试剂
检测试剂盒 生化检测 酶类检测 植物检测 氧化检测
生化检测类 HPLC试剂盒 核苷酸系列 色素系列 抗生素残留系列 植物黄酮系列 甾醇系列 木质素单体系列 中药成分系列 生物碱系列 生物胺系列 不饱和脂肪酸系列 动物激素系列 花色苷系列 有机酸系列 植物多酚系列
当前位置: 首页 > 产品文献 > Zearalenone (ZEA)-induced intestinal inflammation is mediate

产品文献

Zearalenone (ZEA)-induced intestinal inflammation is mediate

 

“上海酶联文献” Wentao Fan a, Yanan Lv a, Shuai Ren a, Manyu Shao a, Tongtong Shen a, Kehe Huang a, Jiyong Zhou a, b, Liping Yan a, b, **, Suquan Song a, 

aCollege of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China

bJiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China

h i g h l i g h t s

ZEA increased NLRP3 inflammasome expression and cytokines release in cells. Elevated cytokines induced severe intestinal inflammation in ZEA-treated mice. ZEA induced colitis by activating ROS mediated NLRP3 inflammasome.

a r t i c l e i n f o

Article history:

Received 4 August 2017

Received in revised form

21 September 2017

Accepted 29 September 2017

Available online 30 September 2017

Handling Editor: A. Gies

Keywords:

Zearalenone

NLRP3 inflammasome Pro-inflammatory cytokines Intestinal inflammation Reactive oxygen species

a b s t r a c t

To ascertain whether zearalenone (ZEA) could induce intestinal inflammation and investigate its possible mechanism, we investigated inflammatory cytokine release and the activation of the NLRP3 inflamma-some after ZEA treatment both in vitro or in vivo. First, intestinal porcine enterocyte cell line (IPEC-J2) cells and mouse peritoneal macrophages were treated with ZEA to detect NLRP3 inflammasome acti-vation, and the role of reactive oxygen species (ROS) in ZEA-induced inflammation was investigated. Then, Balb/c mice were fed a gavage of ZEA, and the disease activity indices (DAIs) and histological analysis were used to assess intestinal inflammation. Our study showed that the mRNA expression of NLRP3 inflammasome, pro-interleukin-1b (pro-IL-1b), and pro-interleukin-18 (pro-IL-18) was up-regulated 0.5- to 1-fold and that the release of IL-1b and IL-18 increased from 48 pg mL 1 to 55 pg mL 1 and 110 pg mL 1 to 145 pg mL 1, respectively. However, ROS inhibitor N-acetyl-L-cysteine (NAC) reduced IL-1b and IL-18 release to 45 pg mL 1 and 108 pg mL 1. Moreover, the same phenomenon was observed in intestinal tissues of ZEA-treated mice. In addition, clinical parameters of treated mice showed stools became loose and contained mucous. In addition, the presence of gross blood stool was found in the last 2 d. Histological analysis showed obvious inflammatory cell infiltration and tissue damage in the colon. These findings uncovered a possible mechanism of intestinal mucosal innate im-munity in response to mycotoxin ZEA that ZEA could activate the ROS-mediated NLRP3 inflammasome and, in turn, contribute to the caspase-1-dependent activation of the inflammatory cytokines IL-1b and IL-18.

References

Ascenzi, P., Bocedi, A., Marino, M., 2006. Structureefunction relationship of estro-gen receptor a and b: impact on human health. Mol. Aspect. Med. 27, 299e402.

Bauer, C., Duewell, P., Mayer, C., Lehr, H.A., Fitzgerald, K.A., Dauer, M., Tschopp, J., Endres, S., Latz, E., Schnurr, M., 2010. Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut 59, 1192.

Hankenson, Claire F., Braden-Weiss, Gillian C., Blendy, 2011. Behavioral and activity assessment of laboratory mice (Mus musculus) after tail biopsy under iso-flurane anesthesia. J. Am. Assoc. Lab. Anim. Sci. 50, 686e694 (689).

Camuesco, D., Galvez, J., Nieto, A., Comalada, M., Rodríguezcabezas, M.E., Concha, A., Xaus, J., Zarzuelo, A., 2005. Dietary olive oil supplemented with fish oil, rich in EPA and DHA (n-3) polyunsaturated fatty acids, attenuates colonic inflamma-tion in rats with DSS-induced colitis. J. Nutr. 135, 687.

Dinarello, C.A., 1996. Biologic basis for interleukin-1 in disease. Blood 87, 2095. Duarte, E.R., Oliveira, L.N., Oliveira, N.J.F.D., Abrao,~ F.O., Souza, R.M.D., Melo, M.M.,
2013. Concomitant zearalenone ingestion and porcine Circovirus-2 infection.

Acta Sci. Veterinari 41, 1e6.

Fan, W., Shen, T., Ding, Q., Lv, Y., Li, L., Huang, K., Yan, L., Song, S., 2017. Zearalenone induces ROS-mediated mitochondrial damage in porcine IPEC-J2 cells. J. Biochem. Mol. Toxicol. e21944.

Ferrer, E., Juangarcía, A., Font, G., Ruiz, M.J., 2009. Reactive oxygen species induced by beauvericin, patulin and zearalenone in CHO-K1 cells. Toxicol. Vitro Int. J. Publ. Assoc. Bibra 23, 1504e1509.

Finkgremmels, J., Malekinejad, H., 2007. Clinical effects and biochemical mecha-nisms associated with exposure to the mycoestrogen zearalenone. Anim. Feed Sci. Technol. 137, 326e341.

Harris, H.A., Albert, L.M., Leathurby, Y., Malamas, M.S., Mewshaw, R.E., Miller, C.P., Kharode, Y.P., Marzolf, J., Komm, B.S., Winneker, R.C., 2003. Evaluation of an estrogen receptor-beta agonist in animal models of human disease. Endocri-nology 144, 4241e4249.

Horwood, N.J., Udagawa, N., Elliott, J., Grail, D., Okamura, H., Kurimoto, M., Dunn, A.R., Martin, T., Gillespie, M.T., 1998. Interleukin 18 inhibits osteoclast formation via T cell production of granulocyte macrophage colony-stimulating factor. J. Clin. Invest. 101, 595e603.

Jin, C., Flavell, R.A., 2010. Molecular mechanism of NLRP3 inflammasome activation.

J. Clin. Immunol. 30, 628e631.

Kanneganti, T.D., Lamkanfi, M., 2013. K þ drops tilt the NLRP3 inflammasome.

Immunity 38, 1085e1088.

Ke, W., Xue, Z., Kai, Z., Yong, Y., Miao, Z., Tan, C., Zhou, F., Ling, Z., 2017. Puerarin inhibits amyloid b-induced NLRP3 inflammasome activation in retinal pigment epithelial cells via suppressing ROS-dependent oxidative and endoplasmic re-ticulum stresses. Exp. Cell Res. 357, 335e340.

Kiichi, N., Adam, H.J., Rathinam Vijay, A.K., Seon-Jin, L., Tamas, D., Lam, H.C., Englert, J.A., Marlene, R., Manuela, C., Pyo, K.H., 2011. Autophagy proteins regulate innate immune response by inhibiting NALP3 inflammasome-mediated mitochondrial DNA release. Nat. Immunol. 12, 222.

Kostro, K., Dudek, K., Lisiecka, U., Majerdziedzic, B., Aleksiewicz, R., Lutnicki, K., 2012. Concentrations of proinflammatory mediators of the arachidonic acid cascade in serum of sheep with natural zearalenone intoxication. Bull. Veteri-nary Inst. Pulawy 56, 75e81.

Kruidenier, L., Kuiper, I., Lamers, C.B., Verspaget, H.W., 2003. Intestinal oxidative damage in inflammatory bowel disease: semi-quantification, localization, and association with mucosal antioxidants. J. Pathol. 201, 28e36.

Kwon, K.H., Murakami, A., Ohigashi, H., 2004. Suppressive effects of natural and synthetic agents on dextran sulfate sodium-induced interleukin-1beta release from murine peritoneal macrophages. Biosci. Biotechnol. Biochem. 68, 436.

Kwon, K.H., Murakami, A., Hayashi, R., Ohigashi, H., 2005. Interleukin-1beta targets interleukin-6 in progressing dextran sulfate sodium-induced experimental


colitis. Biochem. Biophys. Res. Commun. 337, 647e654.

Lamkanfi, M., Dixit, V.M., 2012. Inflammasomes and their roles in health and dis-ease. Annu. Rev. Cell & Dev. Biol. 28, 137.

Lu, A., Magupalli, V.G., Ruan, J., Yin, Q., Atianand, M.K., Vos, M.R., Schroder,€ G.F., Fitzgerald, K.A., Wu, H., Egelman, E.H., 2014. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156, 1193.
Mary, V.S., Theumer, M.G., Arias, S.L., Rubinstein, H.R., 2012. Reactive oxygen species sources and biomolecular oxidative damage induced by aflatoxin B1 and fumonisin B1 in rat spleen mononuclear cells. Toxicology 302, 299.
Masters, S.L., Dunne, A., Subramanian, S.L., Hull, R.L., Tannahill, G.M., Sharp, F.A., Becker, C., Franchi, L., Yoshihara, E., Chen, Z., 2010. Activation of the Nlrp3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1b in type 2 diabetes. Nat. Immunol. 11, 897.

Okamoto, M., Liu, W., Luo, Y., Tanaka, A., Cai, X., Norris, D.A., Dinarello, C.A., Fujita, M., 2010. Constitutively active inflammasome in human melanoma cells mediating autoinflammation via caspase-1 processing and secretion of inter-leukin-1beta. J. Biol. Chem. 285, 6477.

Pinton, P., Oswald, I.P., 2014. Effect of deoxynivalenol and other Type B trichothe-cenes on the intestine: a review. Toxins 6, 1615.

Pistol, G.C., Braicu, C., Motiu, M., Gras, M.A., Marin, D.E., Stancu, M., Calin, L., Israelroming, F., Berindanneagoe, I., Taranu, I., 2015. Zearalenone mycotoxin affects immune mediators, MAPK signalling molecules, nuclear receptors and genome-wide gene expression in pig spleen. PLoS One 10, e0127503.

Prosperini, A., Juan-García, A., Font, G., Ruiz, M.J., 2013. Reactive oxygen species involvement in apoptosis and mitochondrial damage in Caco-2 cells induced by enniatins A, A 1, B and B 1. Toxicol. Lett. 222, 36.

Reddy, B.N., Raghavender, C.R., 2007. Outbreaks of aflatoxicoses in India. Afr. J. Food Agric. Nutr. Dev. 7.
Robert, H., Payros, D., Pinton, P., Theodorou, V., Mercierbonin, M., Oswald, I.P., 2017. Impact of mycotoxins on the intestine: are mucus and microbiota new targets? J. Toxicol. Environ. Health Part B Crit. Rev. 1.
Schieber, M., Chandel, N.S., 2014. ROS function in redox signaling and oxidative stress. Curr. Biol. Cb 24, R453.

Siegmund, B., Fantuzzi, G., Rieder, F., Gamboni-Robertson, F., Lehr, H.A., Hartmann, G., Dinarello, C.A., Endres, S., Eigler, A., 2001. Neutralization of interleukin-18 reduces severity in murine colitis and intestinal IFN-gamma and TNF-alpha production. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R1264.

Stoev, S.D., 2015. Foodborne mycotoxicoses, risk assessment and underestimated hazard of masked mycotoxins and joint mycotoxin effects or interaction. En-viron. Toxicol. Pharmacol. 39, 794.

Sutterwala, F.S., Ogura, Y., Szczepanik, M., Lara-Tejero, M., Lichtenberger, G.S., Grant, E.P., Bertin, J., Coyle, A.J., Galan, J.E., Askenase, P.W., 2006. Critical role for NALP3/CIAS1/cryopyrin in innate and adaptive immunity through its regulation of Caspase-1. Immunity 24, 317.

Tschopp, J., Schroder, K., 2010. NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat. Rev. Immunol. 10, 210e215.

Vergauwen, H., 2015. The IPEC-J2 Cell Line. Springer International Publishing. Walsh, A.J., Ghosh, A., Brain, A.O., Buchel, O., Burger, D., Thomas, S., White, L.,

Collins, G.S., Keshav, S., Travis, S.P., 2014. Comparing disease activity indices in ulcerative colitis. J. Crohns Colitis 8, 318.

Wan, L.Y., Woo, C.S., Turner, P.C., Wan, J.M., El-Nezami, H., 2013. Individual and combined effects of Fusarium toxins on the mRNA expression of pro-inflammatory cytokines in swine jejunal epithelial cells. Toxicol. Lett. 220, 238e246.

Wan, L.-Y.M., Allen, K.J., Turner, P.C., El-Nezami, H., 2014. Modulation of mucin mRNA (MUC5AC and MUC5B) expression and protein production and secretion in caco-2/HT29-MTX Co-cultures following exposure to individual and com-bined Fusarium mycotoxins. Toxicol. Sci. 139, 83e98.

Yao, J., Wang, J.Y., Liu, L., Li, Y.X., Xun, A.Y., Zeng, W.S., Jia, C.H., Wei, X.X., Feng, J.L., Zhao, L., 2010. Anti-oxidant effects of resveratrol on mice with DSS-induced ulcerative colitis. Arch. Med. Res. 41, 288e294.
Zaki, M.H., Lamkanfi, M., Kanneganti, T.D., 2011. The Nlrp3 inflammasome: contri-butions to intestinal homeostasis. Trends Immunol. 32, 171e179.

Zhou, R., Tardivel, A., Thorens, B., Choi, I., Tschopp, J., 2010. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 11, 136.

Zmora, N., Levy, M., Pevsnerfishcer, M., Elinav, E., 2017. Inflammasomes and intes-tinal inflammation. Mucosal Immunol. 10, 865e883.


酶联承诺
  • 品质保证
    防伪易碎商标贴,四招助您分辨真假。
  • 送货保障
    产品均有现货,多家快递公司合作准时到达。
  • 售后服务
    产品及实验问题,提供技术支持保障。
关注酶联

上海酶联生物科技有限公司
Shanghai Enzyme-linked Biotechnology Co., Ltd.
订购热线:4008-898-798 / 021-54720761
传 真:021-54222852
地址:上海市松江区云凯路66号T2楼1603室

酶联官方手机二维码
微信扫描二维码,参与酶联活动, 劲爆优惠触手可得!

Shanghai Enzyme-linked Biotechnology Co., Ltd. rss© 2008-2023 沪ICP备12045995号-7 上海酶联生物科技有限公司保留所有权利
上海酶联生物科技有限公司(www.mlbio.cn)专业提供:elisa试剂盒,ELISA试剂盒批发,进口Elisa试剂盒,酶联免疫试剂盒

本网站销售的所有产品仅用于工业应用或者科学研究等非医疗目的,不可用于人类或动物的临床诊断或治疗,非药用,非食用。